
Choosing best shortcuts for a path

Martin Pečar

Jozef Stefan Institute, Ljubljana, Slovenia

Koper, 17. 6. 2015

1 / 19



Motivation

We want to improve the network, but are constrained
(budget)
Our goal is to improve DAGs like Contraction Hierarchies

2 / 19



Motivation

We want to improve the network, but are constrained
(budget)
Our goal is to improve DAGs like Contraction Hierarchies

2 / 19



Motivation - example

3 / 19



Related problems

1 The Shortcut Problem: asks what is the best set of k
additional edges (shortcuts) so that shortest paths will be
preserved and the average hop length of paths will be
minimal;

2 Multi-Constrained Shortest Path: find a path from s to t
with lowest cost, subject to constraints;

3 Constrained Network Optimization

4 / 19



Related problems

1 The Shortcut Problem: asks what is the best set of k
additional edges (shortcuts) so that shortest paths will be
preserved and the average hop length of paths will be
minimal;

2 Multi-Constrained Shortest Path: find a path from s to t
with lowest cost, subject to constraints;

3 Constrained Network Optimization

4 / 19



Related problems

1 The Shortcut Problem: asks what is the best set of k
additional edges (shortcuts) so that shortest paths will be
preserved and the average hop length of paths will be
minimal;

2 Multi-Constrained Shortest Path: find a path from s to t
with lowest cost, subject to constraints;

3 Constrained Network Optimization

4 / 19



General model

Definition
Weighted multiobjective network design problem
B ∈ R+

0
d2 a vector of constraints (”budget”)

G = (V ,E) a directed (multi)graph
c : E 7→ R+

0
d1 costs

b : E 7→ R+
0

d2 ”building” costs
w : V × V 7→ R+

0
d1 weights

Determine E0 ⊂ E such that it satisfies the constrains
b(E0) ≤ B and achieves

min
ES⊂E

(
∑
i,j

wijc(PG(V ,ES)(i , j)))

5 / 19



General model

Definition
Weighted multiobjective network design problem
B ∈ R+

0
d2 a vector of constraints (”budget”)

G = (V ,E) a directed (multi)graph
c : E 7→ R+

0
d1 costs

b : E 7→ R+
0

d2 ”building” costs
w : V × V 7→ R+

0
d1 weights

Determine E0 ⊂ E such that it satisfies the constrains
b(E0) ≤ B and achieves

min
ES⊂E

(
∑
i,j

wijc(PG(V ,ES)(i , j)))

5 / 19



General model

Definition
Weighted multiobjective network design problem
B ∈ R+

0
d2 a vector of constraints (”budget”)

G = (V ,E) a directed (multi)graph
c : E 7→ R+

0
d1 costs

b : E 7→ R+
0

d2 ”building” costs
w : V × V 7→ R+

0
d1 weights

Determine E0 ⊂ E such that it satisfies the constrains
b(E0) ≤ B and achieves

min
ES⊂E

(
∑
i,j

wijc(PG(V ,ES)(i , j)))

5 / 19



General model

Definition
Weighted multiobjective network design problem
B ∈ R+

0
d2 a vector of constraints (”budget”)

G = (V ,E) a directed (multi)graph
c : E 7→ R+

0
d1 costs

b : E 7→ R+
0

d2 ”building” costs
w : V × V 7→ R+

0
d1 weights

Determine E0 ⊂ E such that it satisfies the constrains
b(E0) ≤ B and achieves

min
ES⊂E

(
∑
i,j

wijc(PG(V ,ES)(i , j)))

5 / 19



General model

Definition
Weighted multiobjective network design problem
B ∈ R+

0
d2 a vector of constraints (”budget”)

G = (V ,E) a directed (multi)graph
c : E 7→ R+

0
d1 costs

b : E 7→ R+
0

d2 ”building” costs
w : V × V 7→ R+

0
d1 weights

Determine E0 ⊂ E such that it satisfies the constrains
b(E0) ≤ B and achieves

min
ES⊂E

(
∑
i,j

wijc(PG(V ,ES)(i , j)))

5 / 19



General model

Definition
Weighted multiobjective network design problem
B ∈ R+

0
d2 a vector of constraints (”budget”)

G = (V ,E) a directed (multi)graph
c : E 7→ R+

0
d1 costs

b : E 7→ R+
0

d2 ”building” costs
w : V × V 7→ R+

0
d1 weights

Determine E0 ⊂ E such that it satisfies the constrains
b(E0) ≤ B and achieves

min
ES⊂E

(
∑
i,j

wijc(PG(V ,ES)(i , j)))

5 / 19



Simple problem

Consider a path connecting some cities. We have a budget
which allows construction of a few new road sections.

1 2 3 ... n

Dashed shortcuts are not allowed (b(es) = Inf )

All arcs point to a vertex with higher index

6 / 19



Simple problem

Consider a path connecting some cities. We have a budget
which allows construction of a few new road sections.

1 2 3 ... n

Dashed shortcuts are not allowed (b(es) = Inf )

All arcs point to a vertex with higher index

6 / 19



Simple problem

Consider a path connecting some cities. We have a budget
which allows construction of a few new road sections.

1 2 3 ... n

Dashed shortcuts are not allowed (b(es) = Inf )

All arcs point to a vertex with higher index

6 / 19



Simple problem

Consider a path connecting some cities. We have a budget
which allows construction of a few new road sections.

1 2 3 ... n

Dashed shortcuts are not allowed (b(es) = Inf )

All arcs point to a vertex with higher index

6 / 19



Variants of the problem

Cost of using a shortcut (b(es)):
b(es) = 1 for all allowed shortcuts,
b(es) can be different.

Weights (wij ):
w1n = 1, other wij = 0⇒ constrained shortest path;
several non-zero weights⇒ constrained network
optimization.

7 / 19



Variants of the problem

Cost of using a shortcut (b(es)):
b(es) = 1 for all allowed shortcuts,
b(es) can be different.

Weights (wij ):
w1n = 1, other wij = 0⇒ constrained shortest path;
several non-zero weights⇒ constrained network
optimization.

7 / 19



Variants of the problem

Cost of using a shortcut (b(es)):
b(es) = 1 for all allowed shortcuts,
b(es) can be different.

Weights (wij ):
w1n = 1, other wij = 0⇒ constrained shortest path;
several non-zero weights⇒ constrained network
optimization.

7 / 19



Variants of the problem

Cost of using a shortcut (b(es)):
b(es) = 1 for all allowed shortcuts,
b(es) can be different.

Weights (wij ):
w1n = 1, other wij = 0⇒ constrained shortest path;
several non-zero weights⇒ constrained network
optimization.

7 / 19



Variants of the problem

Cost of using a shortcut (b(es)):
b(es) = 1 for all allowed shortcuts,
b(es) can be different.

Weights (wij ):
w1n = 1, other wij = 0⇒ constrained shortest path;
several non-zero weights⇒ constrained network
optimization.

7 / 19



Variants of the problem

Cost of using a shortcut (b(es)):
b(es) = 1 for all allowed shortcuts,
b(es) can be different.

Weights (wij ):
w1n = 1, other wij = 0⇒ constrained shortest path;
several non-zero weights⇒ constrained network
optimization.

7 / 19



Variants of the problem

Cost of using a shortcut (b(es)):
b(es) = 1 for all allowed shortcuts,
b(es) can be different.

Weights (wij ):
w1n = 1, other wij = 0⇒ constrained shortest path;
several non-zero weights⇒ constrained network
optimization.

7 / 19



All subpaths distances

Subpath travelling costs

c45
c34 c35
c23 c24 c25
c12 c13 c14 c15

cij = cij−1 + cj−1j

8 / 19



All subpaths distances

Subpath travelling costs

c45
c34 c35
c23 c24 c25
c12 c13 c14 c15

cij = cij−1 + cj−1j

8 / 19



b = 1 Constrained shortest path

c(1,n,B) = min
i,k

(c(1, i , k) + c(i ,n,B − k))

k = bBc

Algorithm 1 Dynamic Programming CSP
1: for l = 0 to k do
2: for i = 1 to n do
3: for j = i to n do
4: c(i , j , l) = minv ,s(c(i , v , s) + c(v , j , l − s))
5: c(i , j , l) = min(c(i , j , l), cs

ij )
6: end for
7: end for
8: end for

Complexity is O(k2n3)

9 / 19



b = 1 Constrained shortest path

c(1,n,B) = min
i,k

(c(1, i , k) + c(i ,n,B − k))

k = bBc

Algorithm 2 Dynamic Programming CSP
1: for l = 0 to k do
2: for i = 1 to n do
3: for j = i to n do
4: c(i , j , l) = minv ,s(c(i , v , s) + c(v , j , l − s))
5: c(i , j , l) = min(c(i , j , l), cs

ij )
6: end for
7: end for
8: end for

Complexity is O(k2n3)

9 / 19



b = 1 Constrained shortest path

c(1,n,B) = min
i,k

(c(1, i , k) + c(i ,n,B − k))

k = bBc

Algorithm 3 Dynamic Programming CSP
1: for l = 0 to k do
2: for i = 1 to n do
3: for j = i to n do
4: c(i , j , l) = minv ,s(c(i , v , s) + c(v , j , l − s))
5: c(i , j , l) = min(c(i , j , l), cs

ij )
6: end for
7: end for
8: end for

Complexity is O(k2n3)

9 / 19



b > 0 Constrained shortest path

Even the simplest form (each arc replaced by a shortcut) is
NP-complete, can be translated to knapsack problem

1 2 3 ... n

(M − c12,b12) (M − c23,b23) (M − cn−1n,bn−1n)

(M,0) (M,0) (M,0) (M,0)

M = maxi cii+1

10 / 19



b > 0 Constrained shortest path

Even the simplest form (each arc replaced by a shortcut) is
NP-complete, can be translated to knapsack problem

1 2 3 ... n

(M − c12,b12) (M − c23,b23) (M − cn−1n,bn−1n)

(M,0) (M,0) (M,0) (M,0)

M = maxi cii+1

10 / 19



b > 0 Constrained shortest path

Even the simplest form (each arc replaced by a shortcut) is
NP-complete, can be translated to knapsack problem

1 2 3 ... n

(M − c12,b12) (M − c23,b23) (M − cn−1n,bn−1n)

(M,0) (M,0) (M,0) (M,0)

M = maxi cii+1

10 / 19



Observations

The set of used shortcuts uniquely defines the resulting
shortest path.

Two shortcuts are compatible, if (interiors of) the intervals of the
indexes of the end vertices are not overlapping. The shortest
path can only contain compatible edges.

Example: (5,9) and (7,12) are not compatible, while (5,9) and
(9,12) are.

11 / 19



Observations

The set of used shortcuts uniquely defines the resulting
shortest path.

Two shortcuts are compatible, if (interiors of) the intervals of the
indexes of the end vertices are not overlapping. The shortest
path can only contain compatible edges.

Example: (5,9) and (7,12) are not compatible, while (5,9) and
(9,12) are.

11 / 19



Shortcut gain

Gain of using a shortcut is

g(es
ij ) = (

j−1∑
l=i

cll+1)− cij

Gain of a compatible set of shortcuts is SC is

g(SC) =
∑

es∈SC

g(es)

12 / 19



Shortcut gain

Gain of using a shortcut is

g(es
ij ) = (

j−1∑
l=i

cll+1)− cij

Gain of a compatible set of shortcuts is SC is

g(SC) =
∑

es∈SC

g(es)

12 / 19



Optimal gain

Lemma
If the sets are compatible, then
g(SO) ≥ g(SS)⇒ c(PSO

) ≤ c(PSS
).

PSS
are edges from P which are skipped in PSS

.
c(PSS

) = c(P) + c(SS)− c(PSS
) = c(P)− g(SS)

c(PSO
) = c(P) + c(SO)− c(PSO

) = c(P)− g(SO)
g(SO) ≥ g(SS)⇒ c(PSO

) ≤ c(PSS
)

We are looking for the compatible set of shortcuts with the
biggest gain.

13 / 19



Optimal gain

Lemma
If the sets are compatible, then
g(SO) ≥ g(SS)⇒ c(PSO

) ≤ c(PSS
).

PSS
are edges from P which are skipped in PSS

.
c(PSS

) = c(P) + c(SS)− c(PSS
) = c(P)− g(SS)

c(PSO
) = c(P) + c(SO)− c(PSO

) = c(P)− g(SO)
g(SO) ≥ g(SS)⇒ c(PSO

) ≤ c(PSS
)

We are looking for the compatible set of shortcuts with the
biggest gain.

13 / 19



Optimal gain

Lemma
If the sets are compatible, then
g(SO) ≥ g(SS)⇒ c(PSO

) ≤ c(PSS
).

PSS
are edges from P which are skipped in PSS

.
c(PSS

) = c(P) + c(SS)− c(PSS
) = c(P)− g(SS)

c(PSO
) = c(P) + c(SO)− c(PSO

) = c(P)− g(SO)
g(SO) ≥ g(SS)⇒ c(PSO

) ≤ c(PSS
)

We are looking for the compatible set of shortcuts with the
biggest gain.

13 / 19



Optimal gain

Lemma
If the sets are compatible, then
g(SO) ≥ g(SS)⇒ c(PSO

) ≤ c(PSS
).

PSS
are edges from P which are skipped in PSS

.
c(PSS

) = c(P) + c(SS)− c(PSS
) = c(P)− g(SS)

c(PSO
) = c(P) + c(SO)− c(PSO

) = c(P)− g(SO)
g(SO) ≥ g(SS)⇒ c(PSO

) ≤ c(PSS
)

We are looking for the compatible set of shortcuts with the
biggest gain.

13 / 19



Optimal gain

Lemma
If the sets are compatible, then
g(SO) ≥ g(SS)⇒ c(PSO

) ≤ c(PSS
).

PSS
are edges from P which are skipped in PSS

.
c(PSS

) = c(P) + c(SS)− c(PSS
) = c(P)− g(SS)

c(PSO
) = c(P) + c(SO)− c(PSO

) = c(P)− g(SO)
g(SO) ≥ g(SS)⇒ c(PSO

) ≤ c(PSS
)

We are looking for the compatible set of shortcuts with the
biggest gain.

13 / 19



Optimal gain

Lemma
If the sets are compatible, then
g(SO) ≥ g(SS)⇒ c(PSO

) ≤ c(PSS
).

PSS
are edges from P which are skipped in PSS

.
c(PSS

) = c(P) + c(SS)− c(PSS
) = c(P)− g(SS)

c(PSO
) = c(P) + c(SO)− c(PSO

) = c(P)− g(SO)
g(SO) ≥ g(SS)⇒ c(PSO

) ≤ c(PSS
)

We are looking for the compatible set of shortcuts with the
biggest gain.

13 / 19



b > 0 CSP - Greedy approach

Algorithm 4 Greedy CSP
1: Assign each shortcut eS its normalized gain gN(es)
2: Sort shortcuts S by their normalized gain (descending)
3: SO = {}, i = 1
4: while b(SO) < B do
5: if S(i) compatible with SO then
6: SO = SO ∪ S(i)
7: end if
8: i++
9: end while

10: for j = 1 to m do
11: if g(S(j)) > g(SO) then
12: SO = S(j)
13: end if
14: end for

14 / 19



b > 0 CSP - Greedy approach

Algorithm 5 Greedy CSP
1: Assign each shortcut eS its normalized gain gN(es)
2: Sort shortcuts S by their normalized gain (descending)
3: SO = {}, i = 1
4: while b(SO) < B do
5: if S(i) compatible with SO then
6: SO = SO ∪ S(i)
7: end if
8: i++
9: end while

10: for j = 1 to m do
11: if g(S(j)) > g(SO) then
12: SO = S(j)
13: end if
14: end for

14 / 19



b > 0 CSP - Greedy approach

Algorithm 6 Greedy CSP
1: Assign each shortcut eS its normalized gain gN(es)
2: Sort shortcuts S by their normalized gain (descending)
3: SO = {}, i = 1
4: while b(SO) < B do
5: if S(i) compatible with SO then
6: SO = SO ∪ S(i)
7: end if
8: i++
9: end while

10: for j = 1 to m do
11: if g(S(j)) > g(SO) then
12: SO = S(j)
13: end if
14: end for

14 / 19



Counterexample

2-approximation?

1 2 3 4 5

gN = 1

gN = 1− ε gN = 1− ε gN = 1− ε gN = 1− ε

2
B

bmax
-approximation

15 / 19



Counterexample

2-approximation?

1 2 3 4 5

gN = 1

gN = 1− ε gN = 1− ε gN = 1− ε gN = 1− ε

2
B

bmax
-approximation

15 / 19



Counterexample

2-approximation?

1 2 3 4 5

gN = 1

gN = 1− ε gN = 1− ε gN = 1− ε gN = 1− ε

2
B

bmax
-approximation

15 / 19



Conclusions

Weighted multiobjective CNO was defined
Special cases of CSP were discussed

Further work - find effective solutions for wider classes of
graphs

16 / 19



Conclusions

Weighted multiobjective CNO was defined
Special cases of CSP were discussed

Further work - find effective solutions for wider classes of
graphs

16 / 19



Composition of problems

CSP is composed of 2 problems:
find shortest path
find path, cheaper than B

Both are in P, but the composed problem is NP-hard

17 / 19



Open problem

What can we tell about the complexity of the composed
problem, based on complexity of the subproblems and the type
of composition?

18 / 19



Questions

Questions, comments, ideas, · · · ?

19 / 19


